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Abstract 
 
As designs get larger and the interaction between the design blocks gets 

more complex, it is no longer possible to put a design into an FPGA and see if it 
works, assuming that any problems can be patched later. The problem is that the 
visibility and controllability are not sufficient to be able to diagnose problems, or to 
catch transient problems. While many FPGA developers have been using the 
software equivalent of printf(), better methods are now available in the form of tool 
suites that can create custom logic analyzers tuned to look for certain issues. This 
white paper will explore the basic technology and show some of the possibilities with 
tools from Temento Systems. 
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Introduction 
 
People love to gamble. Cities such as Las Vegas and Macau exist to satisfy 

those needs. Countries, states, cities and schools establish lotteries so they too can 
participate in the primal need. That need is the chance to win big. To walk away with 
the jackpot that allows them to buy the riches they desire, to leave their job – to 
retire. And yet at the same time we all know that in a game of chance, there can 
really only be one winner – the house. They are the only people that in aggregate will 
end up with more money than they started with. 

 
But there is a time and place to gamble, and that is not when designing a new 

chip, especially if the company’s fortunes or survival depend on it. It should not be a 
case of “let’s cut as many corners as we can and pray that we win the jackpot – a 
chip that works first time.” Designing chips is about mitigating as many risks as 
possible while meeting market demands and staying within engineering budgets. In 
other words we should be looking to buy insurance policies that reduce the risks. 

 
One such insurance policy is on-chip instrumentation and debug. Such 

systems have almost become a necessity in complex systems-on-chips (SoCs) since 
the amount of visibility into the chip has diminished as functionality has been added. 
What could be brought out to the pins of the chip in the past, such as busses, are 
now deeply embedded in the system and hidden from view.  

 
Insurance policies have to be effective and reduce the risks enough to make 

the premiums affordable. Many decided that the costs associated with embedded 
logic analyzers in an SoC were too expensive as the costs were born in every chip 
that was manufactured and this had ripple effects because the extra logic had to be 
tested and invariably decreased yield due to the increased die sizes. While this may 
still be an appropriate answer for some chips, where constant data logging is 
necessary, it is not the right answer for the majority of chips. For designs in FPGAs 
the story is a little different, but results in the same end-point. FPGAs provide a lot 
more flexibility, such that the logic for debug can be created only when necessary. 
FGPA device families often have a common pinout, so larger devices can be used 
when debug is being performed and the smaller cheaper devices used in the 
production run with no design modifications necessary. 

 
In many of the SoCs being created today, re-use has become a fact of life. 

Designs are too large to be able to start from a blank sheet of paper, and much of the 
functionality of the system, while necessary, does not add differentiation or 
functionality that is likely to stop the design becoming commoditized. Examples of 
this are the connectivity blocks such as USB, Firewire etc. With the use of multiple IP 
blocks coming from many different places, both inside and outside of a company, 
verification that was already a significant issue has been amplified to the extreme, 
particularly interface verification. It should not be necessary to perform complete 
verification of a third party IP block – that is their job – but it is vital to ensure that the 
block has been integrated correctly and used according to the specification of the IP 
supplier and the needs of the system designer. For this reason we have also started 
to see a lot of standardization happening in the communications fabrics within these 
systems, such as the use of the AMBA bus, or an OCP-IP interconnect fabric. While 
this helps to reduce the protocol issues across the interfaces, their correct integration 
still has to be proven. 
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The use of FPGAs is increasing rapidly, both as the final target for a system 
and also as a way to prototype what will eventually be in an ASIC. FPGA design 
starts are now 20X the number of ASIC starts according to a number of on-line 
sources. While the preferred method of debug is still logic simulation, this suffers 
from a number of problems – but the major one is speed of execution. The low 
performance of RTL simulators means that only short tests can be run and unless 
you have large simulation farms, the total number of simulations is also limited. For 
this reason, many are turning to verification in the FPGA. What a designer wants is to 
make FPGA debug look and feel just like a simulator, and that is the role of an 
integrated debug system. 

Logic Analyzers Fundamentals 
It does not matter if we think about a logic analyzer or a software simulation 

environment, the basic components are the same for both of them, even though 
there will be minor differences in the way that they operate or are implemented. The 
components are basically: 

• Probes – A way to get at and extract information from designated points in 
the design.  

• Triggers – Something that informs the system when and how to capture the 
information on the probes.  

• Storage – Somewhere that the information can get stored at-speed for later 
analysis.  

• Analysis and Display – What you want to do with the data that has been 
captured.  

 
We will now look at each of the components in a little more detail. 

Probes 
In a simulation environment the user provides the name of, or selects, a wire, 

pin, line of code, or any other item that data is to be captured from. In a bench logic 
analyzer what you can probe is limited to the exposed wires. With large designs, be 
they in silicon or an FPGA, many interesting items that are necessary for debug are 
deeply buried inside the device and there is no way to connect a physical probe to 
them. Several companies are providing capabilities that enable internal probing. 
Some are targeted at FPGAs only, such as ChipScope Pro from Xilinx1, which has a 
number of IP cores that can be inserted into the RTL code which make the data 
values on probed wires accessible through the JTAG port of the device. Alternatively 
Dynamic Probe from Agilent2 creates a set of on-board multiplexers that can route 
identified signals to dedicated pins on the FPGA. Others, such as the ClearBlue 
Instrumentation Studio from DAFCA3 target systems on chip. A different approach 
taken by most emulators and more recently by Synplicity4 is to capture all signal 
values in large/fast memories and to filter them afterwards. All of these are tradeoffs 
between flexibility, chip area consumed, turn around time and cost. One of the 
reason emulators are so expensive is because of the enormous amounts of fast 
memory in them. Even simulators are faced with this tradeoff. While the memory they 
consume (disk) is cheaper, adding probes has a considerable performance impact on 
the simulator. 

 
With the size of systems getting larger, more people are looking towards 

hardware solutions as the only way to capture enough data at high enough 
performance levels. 
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Triggers 
Triggers perform a number of functions including: 

• When to start sampling 
• How often to sample 
• When to stop sampling 
 

With a logic simulator, all logical changes on a signal are captured. In the real 
world, this does not happen in such a clean manner. If we want to see the digital 
notion of a signal, this requires sampling. The simplest way is to use a clock as this 
will latch the current value into a register that can then be transferred to memory. The 
second aspect of a trigger is to decide when the capture should start and stop. A 
simple example would be to turn on data capture when the reset sequence has 
finished. In this case the trigger would be a signal that identifies the end of this phase 
of the systems usage. Other triggers can be more complex particularly when there is 
no one-to-one correspondence between the design and the thing that you want to act 
as the trigger. An example of this would be the execution of a particular line of HDL 
code. This requires tool intelligence to build the necessary probes and logic. 

 
It should be clear that triggers can and are the heart and soul of data capture 

systems and is a way in which on-chip debug companies competitively differentiate 
themselves. FS25, a division of MIPS, provides a synthesizable module that allows 
bus traffic to be captured, ignoring idle cycles, start, stop, single cycle, count and 
other triggering capabilities. In addition to these types of capabilities, Temento 
Systems6 adds the ability to synthesize triggers from the PSL7 assertion language. 

Storage 
No system can ever be built with enough memory in it. That should somehow 

be written as a law and no matter how much is made available, someone will want 
more. Tracing consumes huge amounts of memory and thus the question is not so 
much “how much memory?”, but “where is it placed and how much does it cost?” We 
touched on this briefly saying that software simulation employs large, low cost disk 
storage. It can do this because it operates at such slow speeds. This is not an option 
when the debug system is in hardware running at-speed. You want to have the 
minimum impact on the timing of the system so that you do not change the very 
problem that you are trying to find and debug. Many of the early silicon debug 
systems used on-chip memory so that they could operate at high speeds. Clearly this 
severely limited the amount of memory that could be made available and thus the 
depth of any trace that were obtained. It also significantly raised the cost of each and 
every chip. For FPGAs the problem is even worse – they have limited internal 
memory often necessary for design functions. So the logical answer is that external 
memory should be employed. This creates a different set of problems such as how 
many pins are consumed, what is the performance of getting the data out and how 
an external memory system can keep up with the rate that data is produced. This is a 
proverbial problem for all digital systems as memory speed has not kept up with 
processing speed as shown in Figure 18. 
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Analysis and Display 
Having captured the data, you now need to locate the root cause of the 

problem. While a logic analyzer does contain an embedded computer, the analysis is 
preferably performed on a general purpose machine where the original source can 
be accessed. This makes it possible to relate the captured probe data back to a 
source view and provide a more natural debug environment. A number of reports 
have appeared over the past few years about the amount of time spent in verification. 
While there is some controversy about the actual number, one thing that is a lot more 
certain is that typically half of that verification time is spent performing debug. 
Systems that help you locate those problems quickly can thus have a significant 
impact on time-to-market. 

An Example Solution 
In the previous section, we looked at some of the capabilities and challenges 

associated with the individual pieces of a logic analyzer. However, engineers do not 
buy individual pieces; they generally try to find the best overall solutions to their 
problems. In this section, we will turn our attention to an example and some of the 
solutions provided by Temento Systems. 

Rapid FPGA bug discovery 
As stated previously, the size and complexity of today’s FPGAs means that it 

is no longer possible to download the design into an FPGA, place it in a test 
environment and expect to be able to work out what is happening if it does not work 
correctly. In order to fix this problem, both visibility and controllability of the internals 
have to be addressed. 

 
Let me introduce the system architecture of our example. It is a simple bus 

based architecture as shown in figure 2. The bus is an AMBA AHB bus, with two 
masters and two slaves.  
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Figure 2: Example application 

 
The primary requirement for on-chip visibility is to monitor the bus – assuming 

that it is not currently connected off-chip. Now, this sounds like a simple problem to 
solve – just modify the design and bring the bus signals to the external pins. While 
this is possible, it has two problems. The first is that manual modification to the 
design is not to be advised. While there is nothing difficult about it, it is time 
consuming and error prone. If those signals have to be routed through several layers 
of the hierarchy, the time and risks are made worse. So let a tool do it, no matter how 
simple. The second issue to take into account is the additional load being placed on 
the bus by the routing and the pin buffers. This may affect the timing in the system 
and possibly slow down the entire design. Tools provide several ways to identify and 
minimize these problems so once again – let the tools do the work. 

 
In this example, the number of pins we are talking about is small, so 

dedicating a pin per wire is not that onerous. However, if there were multiple busses 
that need to be probed, plus large numbers of other internal signals, multiplexing or 
other data compressions circuitry may need to be added on-chip. It may also be 
necessary to put some memory on-chip so that the values can be captured in real 
time, and then fed out of the chip at a slower rate after the problem space has been 
captured. I will talk more about the capture issues in the next section. 

 
There are plenty of options available for on-chip probing, but what about 

controllability? Suppose we want to capture the data only when Master 1 is talking to 
Slave 1 – perhaps only looking at write cycles from Master to Slave. In addition, to 
make the debug process easier, we would like to instrument the HDL source code, 
so that we can see where we are in the code. Both of these require the addition of 
some quite sophisticated logic, and this is where a tool can make life a lot easier. 
Figure 3 shows the DiaLite tool from Temento adding such capabilities. DiaLite is the 
tool through which all configuration and analysis is performed. In each case, the 
required instruments are selected and dropped into the specified module – in this 
case Slave 0 and then configured with the necessary options. 
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Figure 3: Adding instruments 

 
Adding the source monitoring requires the HDL fault finder instrument. Once 

inserted, watchpoints and other source level or state machine tracing can be added 
as shown in figure 4. 

 

 
Figure 4: Adding source tracing 

 
The HDL fault finder is a powerful module that can do some things that even 

software simulators have never provided. Not only can any line of the source code be 
used as a trigger, but it can also be used as the sampling signal for data. A good 
example would be that you want to capture certain signals while in a particular state 
of an FSM, but switch to a different set of signals after moving to a different state. 
The tools also handle concurrent execution (something that does not happen in a 
simulator), so seeing parallel behavior is quite natural. Once the design has been 
fully instrumented, the modified design is synthesized using a tool such as Precision9 
from Mentor Graphics which can also handle the PSL assertions provided in another 
Temento IP block. 

Deep trace 
Having decided which signals you wish to capture and when, you need to 

make a decision about where to store the information. There is no way to 
permanently store the information while running at-speed, so the information has to 
be kept in memory somewhere. There are basically three choices: 
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1) On chip: which is expensive and may not be available in the FPGA. 
However, some of the advanced features of HDL fault finder enable the amount of 
memory necessary to be minimized.  

2) In a logic analyzer. While these have very deep and wide storage 
capacities, they are expensive and dedicated only to the single task. Most logic 
analyzers are unable to relate data back to the HDL source code. 

3) In an external memory store that is accessible by a general purpose 
computer running analysis software. This solution provides a good cost/performance 
balance. 

 
Temento offers solutions for options 1 and 3. 
 
For external storage, TemStorage is a 1GByte memory arranged 128 wide by 

8M deep. TemStorage can be configured in several ways, including how much data 
is stored before and after a trigger condition. All of the necessary memory access 
logic is constructed by the tool, so the user only has to drop the module into the 
design. Temento also has future plans for TemStorage, such as using it to hold 
stimulus sets that need to be applied to an FPGA, so in other words, working in the 
reverse direction. In addition it can become additional memory available to the FPGA 
for a multitude of other purposes. 

Debugging black box IP components 
With the data captured at full speed, it is now possible to upload the 

information to a general purpose computer and perform the desired analysis and 
display of the results. TemStorage connects to the computer through a USB 2.0 
interface so the data can be uploaded very quickly. The data is stored in a standard 
VCD file so it can be stored and examined at any time. Once on the main computer 
the HDL fault finder module allows you to move around the captured watchpoints 
which are shown as a time sequence. Selecting any watchpoint shows you the 
original source code and the signals that were captured along with each watchpoint 
are easily accessible. This allows you to quickly understand what was happening in 
the device at that time. 

 

 
Figure 5: Data Analysis 

 
State machine views also make it possible to see where you are in terms of a 

protocol and the trace window provides familiar capabilities to look at all of the 
signals that were captured.  
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Conclusions 
Debugging a complex design, even in an FPGA, has become a very difficult 

task due to the problems of visibility into the design. While it is relatively easy to 
patch an FPGA design to increase visibility, the process is slow and error prone. In 
addition, establishing triggers, connection to on-chip or off-chip storage takes more 
time and effort and does not relate back to the original source code. Tool suites, such 
as Temento DiaLite coupled with their new TemStorage, provide a complete flow that 
takes the time an effort out of introducing sophisticated debug solutions into a design 
flow. Using the debug primitives supplied by Temento, it is relatively easy to build a 
complete bus protocol checker and analyzer and to view what is happening at the 
system level rather than just as a sequence of signals value changes. 

 
The use of these techniques can dramatically reduce the time necessary to 

locate and fix problems and provide an additional level of comfort that a design has 
been properly verified. On-chip, at-speed verification with a full debug solution makes 
it possible to significantly increase the hardware quality and to get many more 
software cycles run than would be possible with any simulation model, and far 
cheaper than an emulator. That is what I call an insurance policy with a reasonable 
premium! 
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