
 Copyright © 2007

An Insurance Policy
for your Design

Written by
Brian Bailey

Abstract

As designs get larger and the interaction between the design blocks gets

more complex, it is no longer possible to put a design into an FPGA and see if it
works, assuming that any problems can be patched later. The problem is that the
visibility and controllability are not sufficient to be able to diagnose problems, or to
catch transient problems. While many FPGA developers have been using the
software equivalent of printf(), better methods are now available in the form of tool
suites that can create custom logic analyzers tuned to look for certain issues. This
white paper will explore the basic technology and show some of the possibilities with
tools from Temento Systems.

 An Insurance Policy for your Design

 Copyright © 2007 2

Introduction

People love to gamble. Cities such as Las Vegas and Macau exist to satisfy

those needs. Countries, states, cities and schools establish lotteries so they too can
participate in the primal need. That need is the chance to win big. To walk away with
the jackpot that allows them to buy the riches they desire, to leave their job – to
retire. And yet at the same time we all know that in a game of chance, there can
really only be one winner – the house. They are the only people that in aggregate will
end up with more money than they started with.

But there is a time and place to gamble, and that is not when designing a new

chip, especially if the company’s fortunes or survival depend on it. It should not be a
case of “let’s cut as many corners as we can and pray that we win the jackpot – a
chip that works first time.” Designing chips is about mitigating as many risks as
possible while meeting market demands and staying within engineering budgets. In
other words we should be looking to buy insurance policies that reduce the risks.

One such insurance policy is on-chip instrumentation and debug. Such

systems have almost become a necessity in complex systems-on-chips (SoCs) since
the amount of visibility into the chip has diminished as functionality has been added.
What could be brought out to the pins of the chip in the past, such as busses, are
now deeply embedded in the system and hidden from view.

Insurance policies have to be effective and reduce the risks enough to make

the premiums affordable. Many decided that the costs associated with embedded
logic analyzers in an SoC were too expensive as the costs were born in every chip
that was manufactured and this had ripple effects because the extra logic had to be
tested and invariably decreased yield due to the increased die sizes. While this may
still be an appropriate answer for some chips, where constant data logging is
necessary, it is not the right answer for the majority of chips. For designs in FPGAs
the story is a little different, but results in the same end-point. FPGAs provide a lot
more flexibility, such that the logic for debug can be created only when necessary.
FGPA device families often have a common pinout, so larger devices can be used
when debug is being performed and the smaller cheaper devices used in the
production run with no design modifications necessary.

In many of the SoCs being created today, re-use has become a fact of life.

Designs are too large to be able to start from a blank sheet of paper, and much of the
functionality of the system, while necessary, does not add differentiation or
functionality that is likely to stop the design becoming commoditized. Examples of
this are the connectivity blocks such as USB, Firewire etc. With the use of multiple IP
blocks coming from many different places, both inside and outside of a company,
verification that was already a significant issue has been amplified to the extreme,
particularly interface verification. It should not be necessary to perform complete
verification of a third party IP block – that is their job – but it is vital to ensure that the
block has been integrated correctly and used according to the specification of the IP
supplier and the needs of the system designer. For this reason we have also started
to see a lot of standardization happening in the communications fabrics within these
systems, such as the use of the AMBA bus, or an OCP-IP interconnect fabric. While
this helps to reduce the protocol issues across the interfaces, their correct integration
still has to be proven.

 An Insurance Policy for your Design

 Copyright © 2007 3

The use of FPGAs is increasing rapidly, both as the final target for a system
and also as a way to prototype what will eventually be in an ASIC. FPGA design
starts are now 20X the number of ASIC starts according to a number of on-line
sources. While the preferred method of debug is still logic simulation, this suffers
from a number of problems – but the major one is speed of execution. The low
performance of RTL simulators means that only short tests can be run and unless
you have large simulation farms, the total number of simulations is also limited. For
this reason, many are turning to verification in the FPGA. What a designer wants is to
make FPGA debug look and feel just like a simulator, and that is the role of an
integrated debug system.

Logic Analyzers Fundamentals
It does not matter if we think about a logic analyzer or a software simulation

environment, the basic components are the same for both of them, even though
there will be minor differences in the way that they operate or are implemented. The
components are basically:

• Probes – A way to get at and extract information from designated points in
the design.

• Triggers – Something that informs the system when and how to capture the
information on the probes.

• Storage – Somewhere that the information can get stored at-speed for later
analysis.

• Analysis and Display – What you want to do with the data that has been
captured.

We will now look at each of the components in a little more detail.

Probes
In a simulation environment the user provides the name of, or selects, a wire,

pin, line of code, or any other item that data is to be captured from. In a bench logic
analyzer what you can probe is limited to the exposed wires. With large designs, be
they in silicon or an FPGA, many interesting items that are necessary for debug are
deeply buried inside the device and there is no way to connect a physical probe to
them. Several companies are providing capabilities that enable internal probing.
Some are targeted at FPGAs only, such as ChipScope Pro from Xilinx1, which has a
number of IP cores that can be inserted into the RTL code which make the data
values on probed wires accessible through the JTAG port of the device. Alternatively
Dynamic Probe from Agilent2 creates a set of on-board multiplexers that can route
identified signals to dedicated pins on the FPGA. Others, such as the ClearBlue
Instrumentation Studio from DAFCA3 target systems on chip. A different approach
taken by most emulators and more recently by Synplicity4 is to capture all signal
values in large/fast memories and to filter them afterwards. All of these are tradeoffs
between flexibility, chip area consumed, turn around time and cost. One of the
reason emulators are so expensive is because of the enormous amounts of fast
memory in them. Even simulators are faced with this tradeoff. While the memory they
consume (disk) is cheaper, adding probes has a considerable performance impact on
the simulator.

With the size of systems getting larger, more people are looking towards

hardware solutions as the only way to capture enough data at high enough
performance levels.

 An Insurance Policy for your Design

 Copyright © 2007 4

Triggers
Triggers perform a number of functions including:

• When to start sampling
• How often to sample
• When to stop sampling

With a logic simulator, all logical changes on a signal are captured. In the real
world, this does not happen in such a clean manner. If we want to see the digital
notion of a signal, this requires sampling. The simplest way is to use a clock as this
will latch the current value into a register that can then be transferred to memory. The
second aspect of a trigger is to decide when the capture should start and stop. A
simple example would be to turn on data capture when the reset sequence has
finished. In this case the trigger would be a signal that identifies the end of this phase
of the systems usage. Other triggers can be more complex particularly when there is
no one-to-one correspondence between the design and the thing that you want to act
as the trigger. An example of this would be the execution of a particular line of HDL
code. This requires tool intelligence to build the necessary probes and logic.

It should be clear that triggers can and are the heart and soul of data capture

systems and is a way in which on-chip debug companies competitively differentiate
themselves. FS25, a division of MIPS, provides a synthesizable module that allows
bus traffic to be captured, ignoring idle cycles, start, stop, single cycle, count and
other triggering capabilities. In addition to these types of capabilities, Temento
Systems6 adds the ability to synthesize triggers from the PSL7 assertion language.

Storage
No system can ever be built with enough memory in it. That should somehow

be written as a law and no matter how much is made available, someone will want
more. Tracing consumes huge amounts of memory and thus the question is not so
much “how much memory?”, but “where is it placed and how much does it cost?” We
touched on this briefly saying that software simulation employs large, low cost disk
storage. It can do this because it operates at such slow speeds. This is not an option
when the debug system is in hardware running at-speed. You want to have the
minimum impact on the timing of the system so that you do not change the very
problem that you are trying to find and debug. Many of the early silicon debug
systems used on-chip memory so that they could operate at high speeds. Clearly this
severely limited the amount of memory that could be made available and thus the
depth of any trace that were obtained. It also significantly raised the cost of each and
every chip. For FPGAs the problem is even worse – they have limited internal
memory often necessary for design functions. So the logical answer is that external
memory should be employed. This creates a different set of problems such as how
many pins are consumed, what is the performance of getting the data out and how
an external memory system can keep up with the rate that data is produced. This is a
proverbial problem for all digital systems as memory speed has not kept up with
processing speed as shown in Figure 18.

 An Insurance Policy for your Design

 Copyright © 2007 5

Analysis and Display
Having captured the data, you now need to locate the root cause of the

problem. While a logic analyzer does contain an embedded computer, the analysis is
preferably performed on a general purpose machine where the original source can
be accessed. This makes it possible to relate the captured probe data back to a
source view and provide a more natural debug environment. A number of reports
have appeared over the past few years about the amount of time spent in verification.
While there is some controversy about the actual number, one thing that is a lot more
certain is that typically half of that verification time is spent performing debug.
Systems that help you locate those problems quickly can thus have a significant
impact on time-to-market.

An Example Solution
In the previous section, we looked at some of the capabilities and challenges

associated with the individual pieces of a logic analyzer. However, engineers do not
buy individual pieces; they generally try to find the best overall solutions to their
problems. In this section, we will turn our attention to an example and some of the
solutions provided by Temento Systems.

Rapid FPGA bug discovery
As stated previously, the size and complexity of today’s FPGAs means that it

is no longer possible to download the design into an FPGA, place it in a test
environment and expect to be able to work out what is happening if it does not work
correctly. In order to fix this problem, both visibility and controllability of the internals
have to be addressed.

Let me introduce the system architecture of our example. It is a simple bus

based architecture as shown in figure 2. The bus is an AMBA AHB bus, with two
masters and two slaves.

 An Insurance Policy for your Design

 Copyright © 2007 6

Master
#0

Master
#1

Slave
#0

Slave
#1

FPGA
Target

JTAG
Port

AMBA AHB On-Chip Bus

Off-Chip
Tracing

AMBA AHB Probes

Master
#1

Master #0

Slave #0

Slave #1

System
Memory
Map

0

1000

2000

4000

5000

9000

A000

C000

D000

Figure 2: Example application

The primary requirement for on-chip visibility is to monitor the bus – assuming

that it is not currently connected off-chip. Now, this sounds like a simple problem to
solve – just modify the design and bring the bus signals to the external pins. While
this is possible, it has two problems. The first is that manual modification to the
design is not to be advised. While there is nothing difficult about it, it is time
consuming and error prone. If those signals have to be routed through several layers
of the hierarchy, the time and risks are made worse. So let a tool do it, no matter how
simple. The second issue to take into account is the additional load being placed on
the bus by the routing and the pin buffers. This may affect the timing in the system
and possibly slow down the entire design. Tools provide several ways to identify and
minimize these problems so once again – let the tools do the work.

In this example, the number of pins we are talking about is small, so

dedicating a pin per wire is not that onerous. However, if there were multiple busses
that need to be probed, plus large numbers of other internal signals, multiplexing or
other data compressions circuitry may need to be added on-chip. It may also be
necessary to put some memory on-chip so that the values can be captured in real
time, and then fed out of the chip at a slower rate after the problem space has been
captured. I will talk more about the capture issues in the next section.

There are plenty of options available for on-chip probing, but what about

controllability? Suppose we want to capture the data only when Master 1 is talking to
Slave 1 – perhaps only looking at write cycles from Master to Slave. In addition, to
make the debug process easier, we would like to instrument the HDL source code,
so that we can see where we are in the code. Both of these require the addition of
some quite sophisticated logic, and this is where a tool can make life a lot easier.
Figure 3 shows the DiaLite tool from Temento adding such capabilities. DiaLite is the
tool through which all configuration and analysis is performed. In each case, the
required instruments are selected and dropped into the specified module – in this
case Slave 0 and then configured with the necessary options.

 An Insurance Policy for your Design

 Copyright © 2007 7

Figure 3: Adding instruments

Adding the source monitoring requires the HDL fault finder instrument. Once

inserted, watchpoints and other source level or state machine tracing can be added
as shown in figure 4.

Figure 4: Adding source tracing

The HDL fault finder is a powerful module that can do some things that even

software simulators have never provided. Not only can any line of the source code be
used as a trigger, but it can also be used as the sampling signal for data. A good
example would be that you want to capture certain signals while in a particular state
of an FSM, but switch to a different set of signals after moving to a different state.
The tools also handle concurrent execution (something that does not happen in a
simulator), so seeing parallel behavior is quite natural. Once the design has been
fully instrumented, the modified design is synthesized using a tool such as Precision9
from Mentor Graphics which can also handle the PSL assertions provided in another
Temento IP block.

Deep trace
Having decided which signals you wish to capture and when, you need to

make a decision about where to store the information. There is no way to
permanently store the information while running at-speed, so the information has to
be kept in memory somewhere. There are basically three choices:

 An Insurance Policy for your Design

 Copyright © 2007 8

1) On chip: which is expensive and may not be available in the FPGA.
However, some of the advanced features of HDL fault finder enable the amount of
memory necessary to be minimized.

2) In a logic analyzer. While these have very deep and wide storage
capacities, they are expensive and dedicated only to the single task. Most logic
analyzers are unable to relate data back to the HDL source code.

3) In an external memory store that is accessible by a general purpose
computer running analysis software. This solution provides a good cost/performance
balance.

Temento offers solutions for options 1 and 3.

For external storage, TemStorage is a 1GByte memory arranged 128 wide by

8M deep. TemStorage can be configured in several ways, including how much data
is stored before and after a trigger condition. All of the necessary memory access
logic is constructed by the tool, so the user only has to drop the module into the
design. Temento also has future plans for TemStorage, such as using it to hold
stimulus sets that need to be applied to an FPGA, so in other words, working in the
reverse direction. In addition it can become additional memory available to the FPGA
for a multitude of other purposes.

Debugging black box IP components
With the data captured at full speed, it is now possible to upload the

information to a general purpose computer and perform the desired analysis and
display of the results. TemStorage connects to the computer through a USB 2.0
interface so the data can be uploaded very quickly. The data is stored in a standard
VCD file so it can be stored and examined at any time. Once on the main computer
the HDL fault finder module allows you to move around the captured watchpoints
which are shown as a time sequence. Selecting any watchpoint shows you the
original source code and the signals that were captured along with each watchpoint
are easily accessible. This allows you to quickly understand what was happening in
the device at that time.

Figure 5: Data Analysis

State machine views also make it possible to see where you are in terms of a

protocol and the trace window provides familiar capabilities to look at all of the
signals that were captured.

 An Insurance Policy for your Design

 Copyright © 2007 9

Conclusions
Debugging a complex design, even in an FPGA, has become a very difficult

task due to the problems of visibility into the design. While it is relatively easy to
patch an FPGA design to increase visibility, the process is slow and error prone. In
addition, establishing triggers, connection to on-chip or off-chip storage takes more
time and effort and does not relate back to the original source code. Tool suites, such
as Temento DiaLite coupled with their new TemStorage, provide a complete flow that
takes the time an effort out of introducing sophisticated debug solutions into a design
flow. Using the debug primitives supplied by Temento, it is relatively easy to build a
complete bus protocol checker and analyzer and to view what is happening at the
system level rather than just as a sequence of signals value changes.

The use of these techniques can dramatically reduce the time necessary to

locate and fix problems and provide an additional level of comfort that a design has
been properly verified. On-chip, at-speed verification with a full debug solution makes
it possible to significantly increase the hardware quality and to get many more
software cycles run than would be possible with any simulation model, and far
cheaper than an emulator. That is what I call an insurance policy with a reasonable
premium!

References

1 Xilinx: ChipScope Pro Software and Cores User Guide , available at:

http://www.xilinx.com/ise/verification/chipscope_pro_sw_cores_9_1i_ug029.pdf
2 Agilent: Agilent Technologies B4655A FPGA Dynamic Probe for Xilinx – Datasheet.

http://cp.literature.agilent.com/litweb/pdf/5989-0423EN.pdf
3 DAFCA web site: http://dafca.com/products/clearblue.html#
4 Synplicity Press release: Synplicity Revolutionizes ASIC Verification Methodology

with new TotalRecall Technology – January 2007
5 FS2 bus navigator. http://fs2.com/busnavigator.html
6 Brian Bailey, How assertions can be used for design, EETimes 05/22/2006

http://eetimes.com/news/design/showArticle.jhtml?articleID=188100695
7 Accellera Property Specification Language Reference Manual.

www.eda.org/vfv/docs/PSL-v1.1.pdf
8 Graham Allen and Jody Defazio, IP Solves the Increasing Challenge of

Implementing an Interface to Off-Chip DDR SDRAM. DesignCon 2007
9 Press release: Mentor Graphics® Precision® Synthesis integration with DiaLite

Editions http://www.temento.com/newsroom/news_detail.php?id_news=12

About the author:
Brian Bailey is an independent consultant helping EDA and system design
companies with technical, marketing and managerial issues related to verification
and ESL. Before that he was with Mentor Graphics for 12 years, with his final position
being the Chief Technologist for verification, Synopsys, Zycad, Ridge Computers,
and GenRad. He has published three books, Taxonomies for the Development and
Verification of Digital Systems (Springer, 2005), The Functional Verification of
Electronic Systems: An Overview from Various Points of View (IEC Press, 2005) and
ESL Design and Verification: A Prescription for Electronic System Level Methodology
(Morgan Kaufmann/Elsevier 2007). He chairs two standards committees and has
three patents awarded. He graduated from Brunel University in England with a first-
class honours degree in electrical and electronic engineering.
He can be contacted at brian_bailey@acm.org or through his website:
http://brianbailey.us

